
 Optimism: Rollup Node and Execution

 Engine
 Fix Review

 July 7, 2022

 Prepared for:

 Matthew Slipper

 Optimism

 Prepared by: David Pokora, Simone Monica, Anish Naik, and Justin Jacob

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 80+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 Optimism Fix Review
 PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2022 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be public information; it is licensed to Optimism
 under the terms of the project statement of work and has been made public at Optimism’s
 request. Material within this report may not be reproduced or distributed in part or in
 whole without the express written permission of Trail of Bits.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits uses automated testing techniques to rapidly test the controls and security
 properties of software. These techniques augment our manual security review work, but
 each has its limitations: for example, a tool may not generate a random edge case that
 violates a property or may not fully complete its analysis during the allotted time. Their use
 is also limited by the time and resource constraints of a project.

 When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
 identified in the original report. This work involves a review of specific areas of the source
 code and system configuration, not comprehensive analysis of the system.

 Trail of Bits 2 Optimism Fix Review
 PUBLIC

 Table of Contents

 About Trail of Bits 1

 Notices and Remarks 2

 Table of Contents 3

 Executive Summary 5

 Project Summary 7

 Project Methodology 8

 Project Targets 9

 Summary of Fix Review Results 10

 Detailed Fix Review Results 12

 1. Risk of theft due to reentrancy vulnerability in WithdrawalsRelay 12

 2. Missing zero address checks in L2 CheckpointOracle 14

 3. Possible failure to parse deposit transactions due to incorrect gasLimit type 16

 4. Incorrect data validation when parsing transaction logs 18

 5. Execution engine API lacks endpoint authentication 20

 6. Pre-deployed L1 attributes contract will never be updated 21

 7. Underspecified behavior regarding deposits made through smart contracts 23

 8. Incorrect error handling when creating an L2 block 25

 9. Incomplete error handling throughout optimistic-specs 27

 10. Inconsistencies within documentation 28

 11. Risk of denial of service due to free deposit transactions on L2 29

 12. Use of time.After() in select statements can lead to memory leaks 30

 A. Status Categories 32

 Trail of Bits 3 Optimism Fix Review
 PUBLIC

 B. Vulnerability Categories 33

 Trail of Bits 4 Optimism Fix Review
 PUBLIC

 Executive Summary

 Engagement Overview
 Optimism engaged Trail of Bits to review the security of its optimistic rollup node and
 execution engine. From April 11 to April 29, 2022, a team of four consultants conducted a
 security review of the client-provided source code, with six person-weeks of effort. Details
 of the project’s scope, timeline, test targets, and coverage are provided in the original audit
 report.

 Optimism contracted Trail of Bits to review the fixes implemented for issues identified in
 the original report. From June 22 to June 23, 2022, a team of two consultants conducted a
 review of the client-provided source code.

 Summary of Findings
 The original audit uncovered significant flaws that could impact system confidentiality,
 integrity, or availability. A summary of the original findings is provided below.

 EXPOSURE ANALYSIS

 Severity Count

 High 2

 Medium 1

 Informational 2

 CATEGORY BREAKDOWN

 Category Count

 Auditing and Logging 1

 Data Validation 3

 Denial of Service 1

 Trail of Bits 5 Optimism Fix Review
 PUBLIC

 Overview of Fix Review Results
 Optimism has sufficiently addressed most of the issues described in the original audit
 report.

 Trail of Bits 6 Optimism Fix Review
 PUBLIC

 Project Summary

 Contact Information
 The following managers were associated with this project:

 Dan Guido , Account Manager Cara Pearson , Project Manager
 dan@trailofbits.com cara.pearson@trailofbits.com

 The following engineers were associated with this project:

 David Pokora , Consultant Simone Monica , Consultant
 david.pokora@trailofbits.com simone.monica@trailofbits.com

 Anish Naik , Consultant Justin Jacob , Consultant
 anish.naik@trailofbits.com justin.jacob@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 April 7, 2022 Pre-project kickoff call

 April 18, 2022 Status update meeting #1

 April 25, 2022 Status update meeting #2

 May 2, 2022 Delivery of report draft and report readout meeting

 May 18, 2022 Delivery of final report

 July 7, 2022 Delivery of fix review

 Trail of Bits 7 Optimism Fix Review
 PUBLIC

mailto:dan@trailofbits.com
mailto:cara.pearson@trailofbits.com
mailto:david.pokora@trailofbits.com
mailto:simone.monica@trailofbits.com
mailto:anish.naik@trailofbits.com
mailto:justin.jacob@trailofbits.com

 Project Methodology

 Our work in the fix review included the following:

 ● A review of the findings in the original audit report

 ● A manual review of the client-provided source code and configuration material

 ● A review of the documentation provided alongside the underlying codebases

 Trail of Bits 8 Optimism Fix Review
 PUBLIC

 Project Targets

 The engagement involved a review and testing of the targets listed below.

 Optimistic Rollup Node

 Repository https://github.com/ethereum-optimism/optimistic-specs

 Version 05136a32b9828b595dde47f767218dec53f19aa4

 Types Golang, Solidity

 Platforms Linux, macOS, Windows, Solidity

 After the audit, Optimism relocated the optimistic rollup node code to a monorepo .

 Optimistic Execution Engine

 Repository https://github.com/ethereum-optimism/reference-optimistic-geth

 Version a7423f3a3167d20e93b6d60e648fbe9fec17f380

 Types Golang, Solidity

 Platforms Linux, macOS, Windows, Solidity

 Trail of Bits 9 Optimism Fix Review
 PUBLIC

https://github.com/ethereum-optimism/optimistic-specs
https://github.com/ethereum-optimism/optimism
https://github.com/ethereum-optimism/reference-optimistic-geth

 Summary of Fix Review Results

 The table below summarizes each of the original findings and indicates whether the issue
 has been sufficiently resolved.

 ID Title Status

 1 Risk of theft due to reentrancy vulnerability in WithdrawalsRelay Resolved

 2 Missing zero address checks in L2 CheckpointOracle Unresolved

 3 Possible failure to parse deposit transactions due to incorrect gasLimit
 type

 Resolved

 4 Incorrect data validation when parsing transaction logs Resolved

 5 Execution engine API lacks endpoint authentication Resolved

 6 Pre-deployed L1 attributes contract will never be updated Resolved

 7 Underspecified behavior regarding deposits made through smart
 contracts

 Resolved

 8 Incorrect error handling when creating an L2 block Resolved

 9 Incomplete error handling throughout optimistic-specs Partially
 Resolved

 10 Inconsistencies within documentation Partially
 Resolved

 11 Risk of denial of service due to free deposit transactions on L2 Resolved

 12 Use of time.After() in select statements can lead to memory leaks Resolved

 Trail of Bits 10 Optimism Fix Review
 PUBLIC

 Trail of Bits 11 Optimism Fix Review
 PUBLIC

 Detailed Fix Review Results

 1. Risk of theft due to reentrancy vulnerability in WithdrawalsRelay

 Status: Resolved

 Severity: High Difficulty: Low

 Type: Timing Finding ID: TOB-OPT-1

 Target:
 optimistic-specs/packages/contracts/contracts/L1/abstracts/Withdrawa
 lsRelay.sol

 Description
 It is possible to steal deposited ETH from the L1 OptimismPortal contract due to a
 reentrancy vulnerability in the WithdrawalsRelay contract.

 The OptimismPortal contract allows users to make deposit transactions to be executed
 on L2. Users can specify the L2 target address and the calldata and send an amount of ETH
 that will be locked in the L1 contract and minted on L2.

 To withdraw funds from L2, the user first calls initiateWithdrawal on the Withdrawer
 contract on L2 and later calls finalizeWithdrawalTransaction on the
 OptimismPortal contract on L1. The finalizeWithdrawalTransaction function
 performs a low-level call to send the funds to a user-controlled address. The code checks
 whether the withdrawal has already been finalized, which is indicated by the
 finalizedWithdrawals value; however, finalizedWithdrawals is set after the check
 and after the funds are transferred, so it is possible to reenter this function with the same
 arguments and steal ETH locked in L2.

 function finalizeWithdrawalTransaction(
 uint256 _nonce,
 address _sender,
 address _target,
 uint256 _value,
 uint256 _gasLimit,
 bytes calldata _data,
 uint256 _timestamp,
 WithdrawalVerifier.OutputRootProof calldata _outputRootProof,
 bytes calldata _withdrawalProof

) external {

 Trail of Bits 12 Optimism Fix Review
 PUBLIC

 [...]
 // Check that this withdrawal has not already been finalized.
 if (finalizedWithdrawals[withdrawalHash] == true) {

 revert WithdrawalAlreadyFinalized();
 }

 l2Sender = _sender;
 // Make the call.
 (bool s,) = _target.call{ value: _value, gas: _gasLimit }(_data);
 s; // Silence the compiler's "Return value of low-level calls not used"

 warning.
 l2Sender = DEFAULT_L2_SENDER;

 // All withdrawals are immediately finalized. If the ability to replay a
 transaction is

 // required, that support can be provided in external contracts.
 finalizedWithdrawals[withdrawalHash] = true ;
 emit WithdrawalFinalized(withdrawalHash);

 [...]

 Figure 1.1:
 optimistic-specs/packages/contracts/contracts/L1/abstracts/WithdrawalsRe

 lay.sol#L90-L151

 Fix Analysis
 This issue has been resolved . The Optimism team has updated the order of state-changing
 operations to ensure reentrancy is not possible in this case.

 Trail of Bits 13 Optimism Fix Review
 PUBLIC

https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/packages/contracts/contracts/L1/abstracts/WithdrawalsRelay.sol#L90-L151
https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/packages/contracts/contracts/L1/abstracts/WithdrawalsRelay.sol#L90-L151
https://github.com/ethereum-optimism/optimistic-specs/pull/378

 2. Missing zero address checks in L2 CheckpointOracle

 Status: Unresolved

 Severity: Low Difficulty: High

 Type: Data Validation Finding ID: TOB-OPT-2

 Target:
 optimistic-specs/packages/contracts/lib/optimism/l2geth/contracts/ch
 eckpointoracle/contracts/oracle.sol

 Description
 The optimistic-specs repository contains a submodule of the optimism repository. The
 optimism repository contains the CheckpointOracle contract, which allows whitelisted
 admins to set a checkpoint via a multisignature scheme. However, the whitelist accepts
 zero address admins; to check whether the admin setting the checkpoint is whitelisted, the
 multisignature scheme’s validation code calls ecrecover , which returns zero on invalid
 signatures. There is no check to determine whether ecrecover ’s return value indicates an
 invalid signature.

 This means that if an admin whitelists a zero address, the multisignature validation code
 would identify any invalid signature as a valid whitelisted address.

 constructor (address [] memory _adminlist, uint _sectionSize , uint _processConfirms ,
 uint _threshold) public {

 for (uint i = 0 ; i < _adminlist.length; i++) {
 admins[_adminlist[i]] = true ;
 adminList.push(_adminlist[i]);

 }

 Figure 2.1:
 optimism/l2geth/contracts/checkpointoracle/contract/oracle.sol#L19-L23

 // In order for us not to have to maintain a mapping of who has already
 // voted, and we don't want to count a vote twice, the signatures must
 // be submitted in strict ordering.
 for (uint idx = 0 ; idx < v.length; idx++){

 address signer = ecrecover(signedHash, v[idx], r[idx], s[idx]);
 require (admins[signer]);
 require (uint256 (signer) > uint256 (lastVoter));
 lastVoter = signer;
 emit NewCheckpointVote(_sectionIndex, _hash, v[idx], r[idx], s[idx]);

 Trail of Bits 14 Optimism Fix Review
 PUBLIC

https://github.com/ethereum-optimism/optimism/blob/70897fa47ea35f288fd6c1bb6c2eef6c45594761/l2geth/contracts/checkpointoracle/contract/oracle.sol#L19-L23

 Figure 2.2:
 optimism/l2geth/contracts/checkpointoracle/contract/oracle.sol#L103-L111

 Fix Analysis
 This issue has not been resolved. The Optimism team has indicated this code is maintained
 by a third party and sourced into their application, but remains unused.

 Trail of Bits 15 Optimism Fix Review
 PUBLIC

https://github.com/ethereum-optimism/optimism/blob/70897fa47ea35f288fd6c1bb6c2eef6c45594761/l2geth/contracts/checkpointoracle/contract/oracle.sol#L103-L111

 3. Possible failure to parse deposit transactions due to incorrect gasLimit
 type

 Status: Resolved

 Severity: High Difficulty: Low

 Type: Denial of Service Finding ID: TOB-OPT-3

 Target:
 optimistic-specs/packages/contracts/contracts/L1/abstracts/DepositFe
 ed.sol ,
 optimistic-specs/opnode/rollup/derive/payload_attributes.go

 Description
 The code that parses deposit transaction events checks that the gas limit is within the
 uint64 range (i.e., it should be less than 2 64), but the gasLimit value is of the uint256
 type. As a consequence, the code will fail to parse every deposit transaction in a block if
 one transaction in the block contains a gasLimit greater than 2 64 .

 event TransactionDeposited (
 address indexed from,
 address indexed to,
 uint256 mint ,
 uint256 value ,
 uint256 gasLimit ,
 bool isCreation ,
 bytes data

);

 Figure 3.1: The TransactionDeposited event in DepositFeed.sol#L31-L39

 The DeriveDeposits function extracts deposit transactions by parsing
 TransactionDeposited events. It first calls the UserDeposits function with the receipt
 of the L1 block to be analyzed. It eventually arrives at the code shown in figure 3.3, which
 checks that the gasLimit value is within the range of uint64 and returns an error if it is
 not. In such a case, DeriveDeposits also returns an error to indicate a failure to derive all
 the deposit transactions in the current L1 block.

 func DeriveDeposits(receipts []*types.Receipt, depositContractAddr common.Address)
 ([]hexutil.Bytes, error) {

 userDeposits, err := UserDeposits(receipts, depositContractAddr)
 if err != nil {

 return nil , fmt.Errorf("failed to derive user deposits: %v" , err)

 Trail of Bits 16 Optimism Fix Review
 PUBLIC

https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/packages/contracts/contracts/L1/abstracts/DepositFeed.sol#L31-L39

 }
 [...]

 Figure 3.2: The DeriveDeposits function in payload_attributes.go#L341-L355

 if !gas.IsUint64() {
 return nil , fmt.Errorf("bad gas value: %x" , ev.Data[offset:offset+ 32])

 }

 Figure 3.3: The UnmarshalLogEvent function in payload_attributes.go#L117-L119

 Fix Analysis
 This issue has been resolved . The Optimism team has resolved the parsing error by
 changing the data type of the affected parameter within the relevant smart contract. They
 have also changed their error handling to account for denial-of-service attacks against
 sibling transactions when parsing a bad transaction.

 Trail of Bits 17 Optimism Fix Review
 PUBLIC

https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/opnode/rollup/derive/payload_attributes.go#L341-L355
https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/opnode/rollup/derive/payload_attributes.go#L117-L119
https://github.com/ethereum-optimism/optimistic-specs/pull/383

 4. Incorrect data validation when parsing transaction logs

 Status: Resolved

 Severity: Informational Difficulty: High

 Type: Data Validation Finding ID: TOB-OPT-4

 Target: optimistic-specs/opnode/rollup/derive/payload_attributes.go

 Description
 The data validation that the rollup node performs while parsing deposit transaction events
 is incorrect. As the code evolves, this incorrect data validation could result in unexpected
 behavior.

 When a user deposits ETH into an L1 contract, the TransactionDeposited event is
 emitted. Before including the transaction on L2, the rollup node parses the
 TransactionDeposited event into a DepositTx struct by calling the
 UnmarshalLogEvent function.

 During the parsing process, the UnmarshalLogEvent function checks the value of
 dataOffset , which represents how far from the start of the encoded log event the
 dynamic data field begins (figure 4.1).

 event TransactionDeposited (
 address indexed from,
 address indexed to,
 uint256 mint ,
 uint256 value ,
 uint256 gasLimit ,
 bool isCreation ,
 bytes data

);

 Figure 4.1: The TransactionDeposited event in DepositFeed.sol#L31-L39

 However, the UnmarshalLogEvent function’s check of the dataOffset field is incorrect. It
 checks that dataOffset does not equal 128 bytes (figure 4.2), but based on the ABI
 encoding of the TransactionDeposited event, dataOffset equals 160 bytes.

 func UnmarshalLogEvent(ev *types.Log) (*types.DepositTx, error) {
 [...]
 var dataOffset uint256.Int
 dataOffset.SetBytes(ev.Data[offset : offset+ 32])

 Trail of Bits 18 Optimism Fix Review
 PUBLIC

https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/packages/contracts/contracts/L1/abstracts/DepositFeed.sol#L31-L39

 offset += 32
 if dataOffset.Eq(uint256.NewInt(128)) {

 return nil , fmt.Errorf("incorrect data offset: %v" , dataOffset[0])
 }
 [...]

 }

 Figure 4.2: The UnmarshalLogEvent function in payload_attributes.go#L79-L153

 Fix Analysis
 This issue has been resolved . The Optimism team has resolved the validation error by
 throwing an error only if the data offset field in the transaction does not equal the offset
 value being tracked in the function.

 Trail of Bits 19 Optimism Fix Review
 PUBLIC

https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/opnode/rollup/derive/payload_attributes.go#L79-L153
https://github.com/ethereum-optimism/optimistic-specs/pull/382

 5. Execution engine API lacks endpoint authentication

 Status: Resolved

 Severity: High Difficulty: High

 Type: Undefined Behavior Finding ID: TOB-OPT-5

 Target: optimistic-specs/opnode/l2/source.go

 Description
 The execution engine API leveraged by Optimism does not authenticate connections,
 allowing anyone to submit deposit transactions to be added to the L2 chain.

 The publicly exposed engine API is used by the rollup node to submit L2 blocks to the
 execution engine so that they can be added to the canonical L2 chain. As stated in the
 documentation, this connection must be trusted and authenticated (figure 5.1):

 Transactions cannot be blindly trusted, trust is established through authentication .
 Unlike other transaction types deposits are not authenticated by a signature:
 the rollup node authenticates them, outside of the engine.

 To process deposited transactions safely, the deposits MUST be authenticated first :

 - Ingest directly through trusted Engine API
 - Part of sync towards a trusted block hash (trusted through previous Engine API
 instruction)

 Deposited transactions MUST never be consumed from the transaction pool.

 Figure 5.1: The “Deposited transaction boundaries” section in exec-engine.md#L37-L 46

 Authentication guarantees that all deposits on the L2 chain can be securely derived from
 the rollup node. However, because the calls to the API are not authenticated, any user can
 create an L2 block with arbitrary deposit transactions and artificially inflate his or her
 balance.

 It is important to note that a peer-to-peer network runs the execution engine. Thus, the
 block must be broadcast and subsequently accepted to be added to the canonical chain.

 Fix Analysis
 This issue has been resolved . The Optimism team has added authentication mechanisms to
 HTTP and WebSocket connections.

 Trail of Bits 20 Optimism Fix Review
 PUBLIC

https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/specs/exec-engine.md#L37-L46
https://github.com/ethereum-optimism/reference-optimistic-geth/pull/13

 6. Pre-deployed L1 attributes contract will never be updated

 Status: Resolved

 Severity: High Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-OPT-6

 Target: optimistic-specs/packages/contracts/contracts/L2/L1Block.sol ,
 optimistic-specs/opnode/rollup/derive/payload_attributes.go

 Description
 The pre-deployed L1 attributes contract expects the msg.sender to be the
 DEPOSITOR_ACCOUNT address; however, the msg.sender is set to depositContractAddr
 on L1. As a result, the L1 attributes contract will never be updated, and it will return
 incorrect data for handling L1 chain reorganizations and extensions.

 address public constant DEPOSITOR_ACCOUNT =
 0xDeaDDEaDDeAdDeAdDEAdDEaddeAddEAdDEAd0001;
 [...]
 function setL1BlockValues(

 uint256 _number,
 uint256 _timestamp,
 uint256 _basefee,
 bytes32 _hash

) external {
 if (msg.sender != DEPOSITOR_ACCOUNT) {

 revert OnlyDepositor();
 }
 [...]

 Figure 6.1: The setl1BlockValues function in L1Block.sol#L13-L34

 The L1 attributes contract should hold the block number, timestamp, base fee, and hash of
 the L1 block that corresponds to the current L2 block. To update this information, the
 contract adds a call to setL1BlockValues with the correct values as the first transaction
 of every L2 block. The transaction is built by the L1InfoDeposit function, in which the
 From address is set to depositContractAddr (which is not the same address as
 DEPOSITOR_ACCOUNT). As a result, every setL1BlockValues transaction reverts,
 preventing the L1 attributes contract from being updated with the correct L1 block data.

 // L1InfoDeposit creats a L1 Info deposit transaction based on the L1 block,
 // and the L2 block-height difference with the start of the epoch.
 func L1InfoDeposit(seqNumber uint64, block L1Info, depositContractAddr

 Trail of Bits 21 Optimism Fix Review
 PUBLIC

https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/packages/contracts/contracts/L2/L1Block.sol#L13-L34

 common.Address) *types.DepositTx {
 [...]
 return &types.DepositTx{

 SourceHash: source.SourceHash(),
 From: depositContractAddr ,
 To: &L1InfoPredeployAddr,
 Mint: nil,
 Value: big.NewInt(0),
 Gas: 99_999_999,
 Data: data,

 }
 }

 Figure 6.2: The L1InfoDeposit function in payload_attributes.go#L 169-L198

 L2 contracts can retrieve data regarding the current L1 block from the L1 attributes
 contract. Moreover, the L2 Optimism chain uses the data returned by the L1 attributes
 contract to handle L1 chain reorganizations and extensions . Due to the L1 attributes
 contract’s failure to update, these contracts and the L2 Optimism chain will retrieve
 incorrect data.

 Fix Analysis
 This issue has been resolved . The Optimism team has changed the From parameter of the
 DepositTx to reference the hard-coded address expected by receiving the smart contract.

 Trail of Bits 22 Optimism Fix Review
 PUBLIC

https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/opnode/rollup/derive/payload_attributes.go#L169-L198
https://github.com/ethereum-optimism/optimistic-specs/pull/386

 7. Underspecified behavior regarding deposits made through smart contracts

 Status: Resolved

 Severity: Low Difficulty: Medium

 Type: Data Validation Finding ID: TOB-OPT-7

 Target:
 optimistic-specs/packages/contracts/contracts/L1/abstracts/DepositFe
 ed.sol

 Description
 When a smart contract submits a deposit transaction, the code will transform the contract
 address to an aliased address by adding a fixed offset. Due to the lack of specification and
 guidance regarding how smart contracts should manage funds within the system, a naive
 smart contract that interacts with the DepositFeed could lock funds in the system that
 may not be retrievable later.

 function depositTransaction (
 address _to ,
 uint256 _value ,
 uint256 _gasLimit ,
 bool _isCreation ,
 bytes memory _data

) public payable {
 if (_isCreation && _to != address (0)) {

 revert NonZeroCreationTarget();
 }

 address from = msg.sender ;
 // Transform the from-address to its alias if the caller is a contract.
 if (msg.sender != tx.origin) {

 from = AddressAliasHelper.applyL1ToL2Alias(msg.sender);
 }

 emit TransactionDeposited(from, _to, msg.value , _value, _gasLimit, _isCreation,
 _data);
 }

 Figure 7.1: The depositTransaction function in DepositFeed.sol#L54-L72

 Because the aliased from address will receive the deposited funds on L2 and nobody has
 access to the keypair associated with the aliased address, a smart contract could
 erroneously deposit funds that are not sent to other addresses into the system.

 Trail of Bits 23 Optimism Fix Review
 PUBLIC

https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/packages/contracts/contracts/L1/abstracts/DepositFeed.sol#L54-L72

 The contract could recover these funds by sending another deposit transaction to move
 the sum of the new and old deposit to another address. However, due to the lack of
 guidance around this scenario, a smart contract could erroneously allow some of a deposit
 to be retained within the alias address and not provide a mechanism to send another
 deposit transaction to recover it, resulting in a loss of funds.

 Fix Analysis
 This issue has been resolved . The Optimism team has provided developer documentation
 underscoring potential developer errors with address aliasing when performing deposits.

 Trail of Bits 24 Optimism Fix Review
 PUBLIC

https://github.com/ethereum-optimism/optimism/pull/2678

 8. Incorrect error handling when creating an L2 block

 Status: Resolved

 Severity: Low Difficulty: High

 Type: Error Reporting Finding ID: TOB-OPT-8

 Target: optimistic-specs/opnode/rollup/driver/state.go ,
 optimistic-specs/opnode/l1/source.go

 Description
 In the code in which the sequencer chooses which L1 block to use as the origin block, the
 error handling is incorrect and could prevent the creation of L2 blocks.

 The sequencer, which is responsible for creating new L2 blocks, must choose an L1 block as
 the new L2 block’s origin. Original blocks allow all L2 blocks to be directly tied to L1 history.
 The sequencer will always choose the most recently mined L1 block. This choice is
 performed in the findL1Origin function; if a new L1 block has been mined, the function
 will retrieve it (figure 8.1).

 func (s *state) findL1Origin(ctx context.Context) (eth.L1BlockRef, error) {
 if s.l2Head.L1Origin.Hash == s.l1Head.Hash {

 return s.l1Head, nil
 }
 currentOrigin, err := s.l1.L1BlockRefByHash(ctx, s.l2Head.L1Origin.Hash)
 if err != nil {

 return eth.L1BlockRef{}, err
 }
 nextOrigin, err := s.l1.L1BlockRefByNumber(ctx, currentOrigin.Number+ 1)
 if errors.Is(err, ethereum.NotFound) {

 return currentOrigin, nil
 }
 if s.l2Head.Time+s.Config.BlockTime >= nextOrigin.Time {

 return nextOrigin, nil
 }

 return currentOrigin, nil
 }

 Figure 8.1: The findL1Origin function in state.go#L173-L203

 If the retrieval fails and the error returned is ethereum.NotFound , the sequencer will
 continue to mine on the current origin block.

 Trail of Bits 25 Optimism Fix Review
 PUBLIC

https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/opnode/rollup/driver/state.go#L173-L203

 However, the L1BlockRefByNumber function never returns an ethereum.NotFound
 error. In fact, it returns the custom error shown in figure 8.2:

 func (s *Source) L1BlockRefByNumber(ctx context.Context, l1Num uint64)
 (eth.L1BlockRef, error) {

 head, err := s.InfoByNumber(ctx, l1Num)
 if err != nil {

 return eth.L1BlockRef{}, fmt.Errorf("failed to fetch header by num %d:
 %v" , l1Num, err)

 }
 return head.BlockRef(), nil

 }

 Figure 8.2: The L1BlockRefByNumber function in source.go#L305-L311

 Since the failure is never captured, findL1Origin will return an empty
 eth.L1BlockRef{} as the current l1Origin . Thus, the following check will fail and will
 prevent the new L2 block from being created (figure 8.3):

 func (s *state) createNewL2Block(ctx context.Context) error {
 // Figure out which L1 origin block we're going to be building on top of.
 l1Origin, err := s.findL1Origin(ctx)
 if err != nil {

 s.log.Error("Error finding next L1 Origin" , "err" , err)
 return err

 }
 if l1Origin.Number <= s.Config.Genesis.L1.Number {

 s.log.Info("Skipping block production because the next L1 Origin is
 behind the L1 genesis")

 return nil
 }
 [...]

 }

 Figure 8.3: The createNewL2Block function in state.go#L205-255

 Fix Analysis
 This issue has been resolved . The Optimism team has resolved the error handling issue by
 immediately returning from the affected method if any type of error is thrown when
 looking for the L1 origin block.

 Trail of Bits 26 Optimism Fix Review
 PUBLIC

https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/opnode/l1/source.go#L305-L311
https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/opnode/rollup/driver/state.go#L207-L255
https://github.com/ethereum-optimism/optimistic-specs/pull/391

 9. Incomplete error handling throughout optimistic-specs

 Status: Partially Resolved

 Severity: Undetermined Difficulty: High

 Type: Error Reporting Finding ID: TOB-OPT-9

 Target: optimistic-specs

 Description
 Error reporting is insufficient or incomplete in several areas of the optimistic-specs
 repository.

 The following is a non-exhaustive list of areas that have error reporting issues:

 ● optimistic-specs/opnode/rollup/driver/driver.go#L61-L65

 ● optimistic-specs/opnode/rollup/derive/payload_attributes.go#L227-
 L231

 ● optimistic-specs/opnode/rollup/derive/payload_attributes.go#L232-
 L236

 ● optimistic-specs/opnode/rollup/derive/payload_attributes.go#L237-
 L241

 ● optimistic-specs/opnode/node/node.go#L203-L205

 Fix Analysis
 This issue has been partially resolved. The Optimism team refactored all relevant portions
 of the codebase flagged for incomplete error handling in this issue. However, additional
 cases of incomplete error handling remain.

 The Optimism team refactored the NewDriver method such that it no longer requires the
 noted error handling. The BatchesFromEVMTransactions method was also refactored to
 perform error handling. Additionally, the code within node.go was refactored in depth.

 Trail of Bits 27 Optimism Fix Review
 PUBLIC

https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/opnode/rollup/driver/driver.go#L61-L65
https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/opnode/rollup/derive/payload_attributes.go#L227-L231
https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/opnode/rollup/derive/payload_attributes.go#L227-L231
https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/opnode/rollup/derive/payload_attributes.go#L232-L236
https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/opnode/rollup/derive/payload_attributes.go#L232-L236
https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/opnode/rollup/derive/payload_attributes.go#L237-L241
https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/opnode/rollup/derive/payload_attributes.go#L237-L241
https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/opnode/node/node.go#L203-L205
https://github.com/ethereum-optimism/optimistic-specs/blob/b37e6587f0a16989126dd0c8b18b2148d87d010d/op-batcher/sequencer/driver.go#L154
https://github.com/ethereum-optimism/optimistic-specs/blob/b37e6587f0a16989126dd0c8b18b2148d87d010d/op-batcher/sequencer/driver.go#L154
https://github.com/ethereum-optimism/optimistic-specs/pull/312/files#diff-337aed9dbe09650c79d8130450141985fbb50af84e823d2783265370215a5b84L61-R61
https://github.com/ethereum-optimism/optimism/pull/2636
https://github.com/ethereum-optimism/optimistic-specs/pull/394/files#diff-646d593c0a03262662b4990bed32c6b732a8c06b73a67040d389ed5c7b48f39dR374-R379

 10. Inconsistencies within documentation

 Status: Partially Resolved

 Severity: Informational Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-OPT-10

 Target: optimistic-specs/specs

 Description
 The Optimistic rollup node specification contains inconsistencies and incorrect information.
 Due to these issues, our review of the codebase required additional effort. Additionally,
 operators and users may have an incorrect understanding of certain system components.

 ● References to engine_executePayloadV1 should refer to the updated API
 engine_newPayloadV1 .

 ● Links to the “deposits spec” throughout the documentation should read
 “withdrawals spec” instead.

 ● Some portions of documentation state that the L1 attributes deposited transaction
 is included only in the first block of a sequencing window, while other portions of
 the documentation state that it is included in every L2 block . (The latter is the
 correct behavior.)

 ● The documentation on the L1 attributes deposit source hash states that the
 l1BlockHash is cast to a uint256 type and then to a bytes32 type. However, the
 l1BlockHash is already a bytes32 object, and the implementation does not
 perform this casting.

 The documentation should include all expected properties and assumptions relevant to the
 codebase.

 Fix Analysis
 This issue has been partially resolved . The Optimism team refactored documentation
 regarding casting, updated engine API references, and provided additional documentation
 regarding withdrawals. However, the team has not fixed the remaining concerns.

 Trail of Bits 28 Optimism Fix Review
 PUBLIC

https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/specs/deposits.md#address-aliasing
https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/specs/rollup-node.md#reading-l1-inputs
https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/specs/deposits.md#kinds-of-deposited-transactions
https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/specs/deposits.md#source-hash-computation
https://github.com/ethereum-optimism/optimism/pull/2658

 11. Risk of denial of service due to free deposit transactions on L2

 Status: Resolved

 Severity: Informational Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-OPT-11

 Target: optimistic-specs/specs

 Description
 Currently, deposit transactions executed on Optimism L2 do not cost gas. The only cost is
 the gas required to call depositTransaction in the OptimismPortal contract on
 Ethereum. If a free transaction requires a large amount of computational power, a denial of
 service could occur.

 function depositTransaction (
 address _to ,
 uint256 _value ,
 uint256 _gasLimit ,
 bool _isCreation ,
 bytes memory _data

) public payable {
 [...]

 Figure 11.1: The depositTransaction() function in DepositFeed.sol#L54-60

 Users can specify the _gasLimit that will be used to execute the transaction on L2;
 depending on the chosen _gasLimit , the sequencer may perform a large amount of
 computation for free. Additionally, Ethereum miners do not have to pay for L1 transactions.

 Fix Analysis
 This issue has been resolved . The Optimism team has added resource metering to the
 OptimismPortal, which charges a gas fee based on the gas limit provided for L2 deposits.

 Trail of Bits 29 Optimism Fix Review
 PUBLIC

https://github.com/ethereum-optimism/optimistic-specs/blob/31d9a92ee9f94afd36ac95b37a48017a34d21b7a/packages/contracts/contracts/L1/abstracts/DepositFeed.sol#L54-L60
https://github.com/ethereum-optimism/optimism/pull/2575

 12. Use of time.After() in select statements can lead to memory leaks

 Status: Resolved

 Severity: Informational Difficulty: Low

 Type: Denial of Service Finding ID: TOB-OPT-12

 Target: optimistic-specs/l2os/service.go ,
 optimistic-specs/l2os/txmgr/txmgr.go

 Description
 Calls to time.After in for/select statements can lead to memory leaks because the
 garbage collector does not clean up the underlying Timer object until the timer fires. A new
 timer, which requires resources, is initialized at each iteration of the for loop (and, hence,
 the select statement). As a result, exiting the select statement through another case
 condition prevents resources originating from the time.After call from being garbage
 collected.

 This issue is prevalent in two locations within the optimistic-specs repository, as shown
 in figure 12.1 and figure 12.2.

 for {
 select {

 // Whenever a resubmission timeout has elapsed, bump the gas
 // price and publish a new transaction.
 case <-time.After(m.cfg.ResubmissionTimeout):

 [...]

 // The passed context has been canceled, i.e. in the event of a
 // shutdown.
 case <-ctxc.Done():

 return nil , ctxc.Err()

 // The transaction has confirmed.
 case receipt := <-receiptChan:

 return receipt, nil
 }

 }
 }

 Figure 12.1: optimistic-specs/l2os/txmgr/txmgr.go#L203-L231

 for {

 Trail of Bits 30 Optimism Fix Review
 PUBLIC

https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/l2os/txmgr/txmgr.go#L203-L231

 select {
 case <-time.After(s.cfg.PollInterval):

 [...]

 case <-s.done:
 log.Info(name + " service shutting down")
 return

 }
 }

 Figure 12.2: optimistic-specs/l2os/service.go#L100-L166

 Fix Analysis
 This issue has been resolved . The Optimism team has resolved the memory leakage error
 by using a timer that can be reused across multiple iterations without exhausting memory.

 Trail of Bits 31 Optimism Fix Review
 PUBLIC

https://github.com/ethereum-optimism/optimistic-specs/blob/05136a32b9828b595dde47f767218dec53f19aa4/l2os/service.go#L100-L166
https://github.com/ethereum-optimism/optimism/pull/2621

 A. Status Categories

 The following table describes the statuses used to indicate whether an issue has been
 sufficiently addressed.

 Fix Review Status

 Status Description

 Undetermined The status of the issue was not determined during this engagement.

 Unresolved The issue persists and has not been resolved.

 Partially Resolved The issue persists but has been partially resolved.

 Resolved The issue has been sufficiently resolved.

 Trail of Bits 32 Optimism Fix Review
 PUBLIC

 B. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 33 Optimism Fix Review
 PUBLIC

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 34 Optimism Fix Review
 PUBLIC

